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Aspirin Inhibits Oxidant Stress, Reduces Age-Associated
Functional Declines, and Extends Lifespan
of Caenorhabditis elegans

Srinivas Ayyadevara)*>* Puneet Bharill>* Abhijit Dandapat,** Changping Hu,** Magomed Khaidakov,
Sona Mitra,* Robert J. Shmookler Reis!™ and Jawahar L. Mehta'*

Abstract

Aims: Oxidative stress and inflammation are leading risk factors for age-associated functional declines. We assessed
aspirin effects on endogenous oxidative-stress levels, lifespan, and age-related functional declines, in the nematode
Caenorhabditis elegans. Results: Both aspirin and its salicylate moiety, at nontoxic concentrations (0.5-1 mM), atten-
uated endogenous levels of reactive oxygen species (p<0.001), and upregulated antioxidant genes encoding su-
peroxide dismutases (especially sod-3, p<0.001), catalases (especially ctl-2, p<0.0001), and two glutathione-S-
transferases (gst-4 and gst-10; each p<0.005). Aspirin, and to a lesser degree salicylate, improved survival of hy-
drogen peroxide, and in the absence of exogenous stress aspirin extended lifespan by 21%-23% (each p<10~°), while
salicylate added 14% (p<10~°). Aspirin and salicylate delayed age-dependent declines in motility and pharyngeal
pumping (each p<0.005), and decreased intracellular protein aggregation (p <0.0001)—all established markers of
physiological aging—consistent with slowing of the aging process. Aspirin fails to improve stress resistance or
lifespan in nematodes lacking DAF-16, implying that it acts through this FOXO transcription factor. Innovation:
Studies in mice and humans suggest that aspirin may protect against multiple age-associated diseases by reducing
all-cause mortality. We now demonstrate that aspirin markedly slows many measures of aging in the nematode.
Conclusions: Aspirin treatment is associated with diminished endogenous oxidant stress and enhanced resistance to
exogenous peroxide, both likely mediated by activation of antioxidant defenses. Our evidence indicates that aspirin
attenuates insulin-like signaling, thus protecting against oxidative stress, postponing age-associated functional de-
clines and extending C. elegans lifespan under benign conditions. Antioxid. Redox Signal. 18, 481-490.

Introduction

GING Is A multi-factorial process influenced by environ-
mental and genetic factors. Many studies have indicated
that oxidative damage limits longevity (15, 31, 50), although
some have questioned a causal role of oxidation in aging due
to failure of antioxidant interventions to extend life (12, 36,
46). Nonetheless, there is strong evidence that aging-related
declines in mitochondrial function and integrity are associ-
ated with oxidative stress (5), and the role of oxidative dam-
age in aging itself remains controversial (50).
A complex interplay of reactive oxygen species (ROS)
generation and genes that protect against ROS damage has
been implicated in the onset and progression of numerous

aging-associated disease states, including type-2 diabetes,
solid cancers, Alzheimer’s dementia, osteoporosis, myocar-
dial infarction, and cerebrovascular accidents (45). Blockade
of insulin/IGF-1 signaling has beneficial effects: it increases
lifespan, confers resistance to oxidative stress, and reduces or
postpones many age-associated conditions and diseases (2, 8,
17, 38). How could different stress states, including those
mediated by ROS, oxidants and other electrophiles, con-
tribute to aging and explain the age-dependent incidence
of diverse diseases? A possible shared mechanism, increas-
ingly invoked in both geriatric and gerontologic contexts, is
inflammation (13).

Aspirin (acetylsalicylic acid), a prototypic cyclooxygenase
inhibitor, is a widely used analgesic agent which opposes
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Innovation

Aspirin is a versatile drug that confers protection against
multiple age-associated diseases, including atherosclerosis,
diabetes, and a variety of cancers. Evidence in mice and
humans suggests that aspirin modestly reduces all-cause
mortality, but it is unknown whether that reduction is
merely the sum of the disease-specific benefits or a more
direct amelioration of aging itself. Our observations dem-
onstrate for the first time that aspirin slows many measures
of aging per se, and provides evidence that insulin-like sig-
naling and antioxidant defenses are involved. The nematode
model is a particularly suitable one in which to establish the
mechanisms underlying aspirin’s diverse benefits.

inflammation and platelet aggregation. It regulates the ac-
tivity of a number of pro-inflammatory signaling molecules,
such as TGF-f (37) and PDGF (48). In addition to its anti-
inflammatory effect mediated through cyclooxygenase in-
hibition, the salicylate moiety in aspirin also reduces the
generation of pro-oxidant species (28). In keeping with these
pharmacologic effects, aspirin reduces the severity of aging-
related endothelial dysfunction in mice (7), modestly lowers
blood pressure in hypertensive mice (26), and reduces cardio-
vascular events in both primary and secondary prevention
trials in humans (11). High-dose aspirin was reported to im-
prove glucose metabolism and reduce fatty acid levels in pa-
tients with type-2 diabetes (20). Aspirin also extends the
lifespan of male mice (43), and significantly reduces all-cause
mortality in patients with type-2 diabetes (35). The mechanisms
by which aspirin increases longevity, however, remain unclear.

The present study was designed to assess the effects of as-
pirin on endogenous ROS levels and regulation of antioxidant
genes in a simple model system, Caenorhabditis elegans. Super-
oxide dismutases (SODs) convert superoxide into oxygen and
peroxide, which in turn is broken down by catalases to mo-
lecular oxygen and water. Peroxide can trigger quite harmful
free-radical chain reactions in cell lipids, and thus is likely to be
the main source of oxidative damage associated with aging
(41), opposed chiefly by certain glutathione S-transferases
(GSTs) (50). We now demonstrate protective effects of aspirin,
accompanied by induction of antioxidant enzymes (SODs,
catalases, and lipoperoxidation-specific GSTs). Moreover, we
document its ability to attenuate aging-associated functional
declines and to extend lifespan in the nematode, largely de-
pendent on the FOXO transcription factor that mediates most
downstream effects of insulin-like signaling.

Results

Aspirin and salicylate reduce endogenous oxidative
stress, and upregulate antioxidant enzymes
and phase-2 detoxification enzymes

In vivo steady-state ROS levels can be inferred from
fluorogenic activation of dichlorodihydrofluorescein diace-
tate (H,DCF-DA, Invitrogen/Life Technologies), provided
that the intensity and duration of excitation (incident light) are
held rigorously constant (10). Total H,DCF-DA fluorescence
was reduced ~40% by treating worms with either 1 mM as-
pirin or 1 mM salicylate (each p <0.001 vs. untreated controls;
Fig. 1A and 1B). H,DCF-DA responds most sensitively to
hydroxyl radical (www.invitrogen.com).

AYYADEVARA ET AL.

Because neither aspirin nor salicylate is itself an antioxidant,
we sought mechanisms by which they might reduce ROS
abundance. Transcript levels were measured for three distinct
classes of antioxidant enzymes: SODs, catalases, and GSTs.
With one exception, all were induced by aspirin and to a lesser
extent by salicylate, each at 1 mM concentration. Of the genes
encoding SODs (Fig. 1C), the most strongly induced (1.6-fold
by salicylate; 2.7-fold by aspirin, p <0.0003) was sod-3, encoding
an Fe/Mn-SOD believed to be localized to mitochondria. Sod-4,
encoding an extracellular Cu/Zn-SOD, was downregulated
3.5-fold by 1 mM aspirin (p<10~*), while sod-5 transcripts were
increased ~20% (Supplementary Fig. S1; supplementary data
are available online at www liebertonline.com/ars). The most
affected catalase gene (Fig. 1E) was ctl-2, induced 2.4-fold by
salicylate (p<0.001) and 2.7-fold by aspirin (p<10~*). CTL-2
protein is found primarily in intestinal peroxisomes. Of the five
GST genes tested (data not shown), the most affected were gst-
10, upregulated 2.5-fold by aspirin (p<0.001) and gst-5, in-
duced ~ 2-fold by aspirin (p <0.005). No upregulation of sod or
ctl genes was observed in a daf-16 mutant (e.g., see Fig. 1D and
1F), implying that these effects of aspirin treatment require the
DAF-16/FOXO transcription factor.

Consistent with transcriptional regulation via DAF-16, the
most affected antioxidant genes are believed to be negatively
regulated by insulin/IGF-1 signaling, and show increased ex-
pression in long-lived daf-2 mutants in which the insulin-like re-
ceptor is disrupted (18). The most affected gst genes, gst-5 and gst-
10, were the only two of 44 genes tested that extend lifespan when
disrupted (3). We examined the expression of GFP-reporter
constructs driven by promoters for gst-4 and gst-10, encoding
GSTs that protect against lipoperoxidation; their expression is
also upregulated in daf-2 mutants (27), although chiefly via the
SKN-1 transcription factor that is closely intertwined with insulin-
like signaling (34). Expression of Py 4::GFP and Py 10:GFP in-
creased at least 3.5-fold in aspirin-treated worms relative to un-
treated controls (Fig. 2; each p<0.0001), corroborating aspirin
induction of antioxidant defenses. Expression of the Pyoq.5:: GFP
reporter in transgenic worms was increased at least 1.6-fold by
aspirin (Fig. 2, bottom panels), somewhat less than the upregu-
lation observed at the transcript level by RT-PCR (Fig. 1C).

Aspirin improves resistance to an oxidative stress
and extends C. elegans lifespan

Wild-type C. elegans were exposed to aspirin or salicylate
from the last larval stage (L4, 2 days after hatching from eggs),
and transferred on day 5 post-hatch to liquid medium contain-
ing a toxic level (5 mM) of H,O,. As shown in Figure 3A, aspirin
and to a lesser extent salicylate (each at 1 mM) significantly ex-
tended survival of wild-type (N2) nematodes in the presence of a
toxic level of H,O, (p<0.001 and p <0.01, respectively).

Because stress resistance can provide a surrogate biomarker
for longevity (22, 29, 40-42), we asked whether aspirin might
also extend nematode lifespan. Aspirin (0.5 or 1.0 mM) increased
the lifespan of wild-type worms by 12%-30% in three experi-
ments (each p <0.001, data summarized in Table 1). A typical set
of survivals is shown in Figure 3C; overall, the weighted average
life extensions by 0.5 and 1.0mM aspirin were 23% and 21%,
respectively, with a combined p value of <107 at 1 mM (Table
1). The salicylate moiety of aspirin, at 1 mM, also enhanced C.
elegans lifespan in three experiments (e.g., Fig. 3C), producing an
average extension of 14% (combined p<10~7; Table 1).
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FIG.1. Reduction of oxidative stress by aspirin and salicylate. (A, B) Steady-state levels of reactive oxygen species (ROS),
as reflected by DCF fluorescence, were significantly reduced by aspirin or salicylate treatment (each at 1 mM). (A) shows
typical worms in each group, while (B) summarizes data for total fluorescence per worm (=20 worms per group). *Differs
from control at p <0.001 by 2-tailed t-test. (C—F) Steady-state transcript levels of catalase (ct/) and superoxide dismutase (sod)
oxidative-defense genes, in the presence of 1 mM aspirin, 1 mM salicylate, or vehicle. Transcript levels were assessed by RT-
PCR, relative to 8-actin transcript abundance in the same group. Bars indicate means+SEM for 3-5 independent biological
expansions per group. (C) Three of the nematode superoxide dismutase (sod) genes in wild-type worms, strain Bristol N2-
DRM; (D) sod-3 transcripts in daf-16(mu86) worms; (E) the three nematode catalase (ct) genes in wild-type worms, strain
Bristol-N2/DRM; (F) ctl-2 transcripts in daf-16(mu86) worms. Significance of differences from control, by 2-tailed t-test for
small samples or samples of unequal variance (appropriate for small N): ‘p<0.05;, *p<0.02; *p<0.01; **p<0.001;
**+%p <0.0001. (To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub

.com/ars.)

Insulin/IGF-1 signaling has been implicated in aging of C.
elegans, results replicated in Drosophila and mice (14), and is
almost entirely dependent on the DAF-16/FOXO transcrip-
tion factor (25). We assessed whether lifespan extension and
stress resistance conferred by aspirin also require DAF-16. As
shown in Figure 3B and 3D (data summarized in Table 1),
aspirin had no detectable effect on either survival of H,O,
stress, or lifespan, for a C. elegans mutant in which the daf-16
gene was severely disrupted, implying that these salutary
effects of aspirin depend, largely or entirely, on the DAF-16/
FOXO transcription factor.

Aspirin delays age-associated functional declines
in C. elegans

Aging is associated with a progressive decline in many
physiological functions, such as spontaneous movement and

pharyngeal pumping in the nematode (16, 19). As shown in
Figure 4A, the age-dependent decline in pharyngeal pumping
was reduced or delayed by 1mM aspirin or salicylate (each
p<0.001 on day 6, and p<0.05 on day 10 of adulthood). In
this respect, aspirin- and salicylate-treated worms appeared
physiologically “younger” than the untreated controls. Since
food intake was initially unchanged (at the first assay, on
adult day 2), and was subsequently higher in the treated
worms than in controls, it can be surmised that aspirin and
salicylate do not exert their salutary effects via dietary re-
striction (i.e., by suppressing food intake).

A progressive decline with age in C. elegans motility, both
spontaneous and in response to exogenous stimuli, has been
well documented (16, 19). Continuous exposure to either as-
pirin or salicylate (each at 1 mM) significantly inhibited the
age-related decline in motility. The fraction of untreated
worms moving in response to touch (Fig. 4B) fell 30% between
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10 and 14 days of adult age (Chi-squared p <10~ °); in contrast,
the decline was <3% in aspirin- or salicylate- treated wormes,
not significantly changed from day 10 (open bars in Fig. 4B).
At 14 days, however, ASA- and salicylate-treated worms
showed significantly more motility than untreated controls
(solid bars; P<10~° and 0.0005, respectively). Spontaneous
movement was relatively infrequent at adult day 10 (~8.6%),
and declined to 0.3% by day 14 (Fig. 4C, Control bars).
Treatment with aspirin or salicylate doubled the spontaneous
movement frequency at the earlier time point (Fig. 4C, open
bars; each p <0.005), and raised the 14-day value (filled bars)
from 0.3% to 3.7% (p <0.005) and 2.3% (p < 0.05), respectively.
Both the pumping rate and motility data suggest that aspirin
and salicylate slow the decline in function that accompanies
physiological aging.

Aspirin reduces aging-associated aggregation
of proteins in C. elegans

Aggregation of proteins, a characteristic of many progres-
sive neuropathies, increases with age but is slowed by mu-
tations that extend lifespan, and may thus provide a robust
molecular biomarker of aging (6, 29). We assessed a trans-
genic strain expressing a fluorescence-tagged polyglutamine
repeat (Qq0::YFP) in body wall muscle (6). Such strains un-
dergo age-dependent aggregate formation, as evidenced by a
highly punctate pattern of yellow fluorescence in body wall
muscle, commencing at day 3 after hatch (adult day 1). As-
pirin reduced both the size and number of Qu::YFP aggre-

gates observed at adult day 4, each by >30% (p<0.0001)
(Fig. 5).

Discussion

Oxidative stress generally elicits an inflammatory response
that, under favorable conditions, initiates tissue repair and
restoration of a normal physiological state. However, in se-
nescence, excessive oxidative stress is not adequately con-
trolled by endogenous antioxidant reserves and may produce
a state of chronic inflammation (13, 47). Aspirin, a very widely
used drug, is a potent anti-inflammatory agent. We have
shown that this drug, and to a somewhat lesser extent its
salicylate moiety, can reduce age-associated oxidative stress
and attenuate insulin/IGF-1 signaling (based on known, an-
tioxidant gene targets of this pathway) in C. elegans. Both these
agents also delay several measures of physiological aging and
extend nematode lifespan.

One shared precept of various “oxidative stress theories of
aging” is that endogenous ROS species, including superoxide
and peroxide radical, either increase with age or are less ef-
fectively offset by antioxidant defenses, resulting in many
aging-associated declines in tissue functions (42). In the
present studies, we noted that both aspirin and salicylate at-
tenuate, by >40%, total signal reported by the fluorogenic-
dye H,DCF-DA as a measure of endogenous ROS levels (10).
To evaluate the balance between ROS generation and subse-
quent elimination by antioxidant enzymes, we also measured
the transcript levels of key “longevity-assurance genes”
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FIG. 3. Aspirin and salicylate extend C. elegans survival of oxidative stress and lifespan under benign conditions. Aspirin
and salicylate (each at 1 mM) extended survival in 5 mM hydrogen peroxide for wild-type worms [N2-DRM, (A)], but had no
effect on the daf-16 (mu86) mutant strain (B). Treated N2 worms differed from control survivals by Gehans-Wilcoxon log-rank
test: *p<0.01; **p<0.001. Life-span of N2 wild-type worms was also extended by 0.5- or 1 mM aspirin or 1 mM salicylate [(C)
each p<0.001 vs. control, by Gehans-Wilcoxon log-rank test; N>90 for each group], but the daf-16 mutant derived no benefit
from either drug (D). Replicate experiments all demonstrated significant extension of wild-type lifespan by aspirin and salic-
ylate (3 independent tests) as summarized in Table 1; the experiment shown in (C) and (D) is “Experiment 1” of Table 1.

encoding 3 catalases, 5 SODs, and 5 GSTs. We found that
aspirin, and to a lesser extent salicylate, increased transcript
levels for nearly all of the tested antioxidant genes, with the
greatest effect (>2.5-fold for aspirin) on sod-3 and ctl-2. In
keeping with these observations, we found that both aspirin
and salicylate improved survival in the presence of exogenous
H,O, (Fig. 3A). A curious exception to this pattern is pre-
sented by sod-4, which was downregulated more than 3-fold
by aspirin (Supplementary Fig. S1). It was previously re-
ported that deletion of the sod-4 gene, which encodes an ex-
tracellular SOD and contributes ~5% of total sod transcripts
(46), has no effect on lifespan or resistance to several oxidative
stresses in a wild-type background, but further increases
lifespan (especially maximal lifespan) in the long-lived daf-2
background (12). Since aspirin appears to reduce insulin-like
signaling, and thus resembles a daf-2 hypomorphic mutation,
it is likely that aspirin-mediated suppression of sod-4 would
serve to promote rather than impair longevity.

Peroxide is a potent inducer of lipid peroxidation, which
poses the greatest oxidative threat to survival because lipo-
peroxides (unlike other ROS molecules) are sufficiently long-
lived to create free-radical chain reactions in vivo (50). The two
nematode glutathionyl S-transferases with highest activity

against lipoperoxides are GST-4 and GST-10 (3). It is thus
particularly significant that protein-level expression of re-
porters for these GST’s was increased >3-fold by aspirin
treatment (Fig. 2). Considering that vulnerability to lipid
peroxidation is one of the strongest predictors of nematode
longevity (41), aspirin’s ability to strongly induce these en-
zymes may contribute to its extension of nematode lifespan.

The GSTs are phase-2 detoxification genes, which have
been proposed to play key roles in longevity assurance (21,
27). In addition to GSTs, other phase-1 and phase-2 enzymes
mediating resistance to endogenous and exogenous toxicants
(which include but extend beyond ROS) comprise the cata-
lases, SODs, cytochromes P450, short-chain dehydrogenases/
reductases, and UDP-glucuronosyltransferases (UGTs) (33).
These genes are broadly upregulated in long-lived C. elegans
mutants including daf-2, age-1 and clk-1, which in particular
overexpress sod-3 and ctl-2 (32), the two antioxidant genes
most highly induced by aspirin and salicylate treatments (Fig.
1C and 1E), and reported to be essential for daf-16-mediated
innate resistance to bacterial infection (9). Taken together, the
evidence that aspirin treatment of daf-16 mutant worms en-
hanced neither peroxide resistance nor lifespan (Fig. 3B and
3D), and failed to induce sod-3 and ctl-2 (Fig. 1D and 1F),
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TABLE 1. ASPIRIN AND SALICYLATE EXTEND ADULT LIFESPAN
ofF C. ELEGANS AT 20°C

Deaths
(N)

Mean %

Strain Condition +SD  Increase value*

Experiment 1

N2DRM Control (vehicle) 95 15.7£27 — —
N2DRM Aspirin (0.5mM) 100 194+23 24 < 0.001
N2DRM Aspirin (1 mM) 90 18.8%£23 20 <0.001
N2DRM Salicylate (1mM) 98 17.6+27 12 < 0.001
daf-16  Control (vehicle) 35 14.5+28 — —
daf-16  Aspirin (1 mM) 34 145+18 O 0.81
Experiment 2
N2DRM  Control (vehicle) 32 14.8£47 — —
N2DRM  Aspirin (0.5mM) 35 19.2+42 30 < 0.001
N2DRM  Aspirin (1 mM) 35 18.6+43 26 <0.001
N2DRM  Salicylate (1mM) 31 18.1%£42 22 <0.01
daf-16 Control (vehicle) 35 135+1.8 — —
daf-16 Aspirin (1 mM) 32 145+29 7 0.23
Experiment 3
N2DRM  Control (vehicle) 35 15.1£1.0 — —
N2DRM  Aspirin (0.5mM) 31 169+24 12 <0.01
N2DRM  Aspirin (1 mM) 33 17.8+21 18 < 0.001
N2DRM  Salicylate (1mM) 35 169%£1.0 12 <0.01
Total ~ Mean  Composite
Sum of 2-3 Experiments: N Increase p
N2DRM  Aspirin (0.5mM) 166 23.0% 1078
N2DRM  Aspirin (1 mM) 158 20.9% 1077
N2DRM  Salicylate (ImM) 164 13.9% 10°°
daf-16 Aspirin (1 mM) 66 3.4% N.S.

Mean adult lifespans are expressed in days after the L4/adult
molt. Total lifespans are approximately 2.5 days longer (the
developmental interval from egg-lay to adult) at 20°C. The mean
increase (last 4 rows) has been weighted by the number of worms
per experiment.

*Significance of survival differences was ascertained by Gehans-
Wilcoxon log-rank test, comparing treatment groups to untreated
controls. The composite p value combining multiple independent
experiments is the product of p values observed in the individual
experiments.

implies that signaling through DAF-16/FOXO mediates most
or all of aspirin’s beneficial effects.

Both aspirin and salicylate slowed the age-dependent de-
clines in motility and pharyngeal pumping, two of the most
reliable physiological biomarkers of C. elegans aging (19, 24).
Protein aggregation, due to oxidation, misfolding, and un-
structured /nonpolar interactions between polyglutamine
tracts, underlies aging-related neurodegenerative disorders
and possibly many other age-dependent traits (30). Drugs that
interfere with protein aggregation protect protein homeosta-
sis, and can extend lifespan (1), and clinical trials indicate a
substantial protective effect of long-term aspirin treatment
against Alzheimer’s dementia, which involves at least two
types of protein aggregates (44). Using a nematode model of
polyglutamine aggregation, we were able to demonstrate that
aspirin indeed reduces aggregate size by >2-fold and the
number of aggregates by >30% (Fig. 5). In view of the known
association of protein aggregation with both oxidation and
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aging (29), it is likely that the ability of aspirin to lower ROS
levels and induce antioxidant defenses, demonstrated in the
present study, is linked to inhibition of protein aggregation
and extension of lifespan of the nematode.

The observation of C. elegans life-span extension by aspirin
is consistent with the more modest increase in longevity ob-
served for aspirin-treated male mice (43). In human subjects,
aspirin ameliorated clinical parameters associated with type-2
diabetes (20), and moderately reduced hypertension (26). At
therapeutic concentrations, aspirin is a potent anti-angiogenic
agent and inhibits atherosclerotic plaque formation (23).
Moreover, aspirin prevents restenosis after vascular injury,
reduces the frequency of recurrent myocardial infarctions and
strokes, and reduces or delays the development and pro-
gression of several cancers in humans (39). One plausible
explanation for the remarkable versatility of aspirin in con-
ferring protection against such a wide assortment of age-
dependent diseases is that aspirin opposes insulin/IGF
signaling, a pathway that contributes to aging and age-associated
diseases (22), and/or opposes other pathways that converge
on the DAF-16/FOXO transcription factor (49). The 21%-23%
mean life extension observed in aspirin-treated nematodes,
dependent on functional DAF-16, constitutes the strongest
evidence to date for such a general, anti-aging effect. Since
salicylate conferred benefits similar to those of aspirin, but by
most measures was less effective, it appears that the beneficial
effects of aspirin described here are mediated largely, but not
entirely, by the salicylate moiety.

“Oxidative damage” theories of aging attribute its ravages
to cell damage inflicted by ROS. Such theories have fallen into
disfavor of late, due to the inability to forestall aging with
genetic or drug interventions that demonstrably reduce
markers of oxidative damage (12, 36, 46). Although cogently
argued, these critiques challenge a rather narrow and out-
dated version of such theories. They thus fail to take into
account the remarkable redundancy and compensatory abil-
ity of antioxidant defenses (4), and the positive role of oxygen
free radicals in inflammatory signaling. Thus, an intervention
that defeats any one antioxidant effector could induce other
overlapping defenses, or might thwart inflammatory reac-
tions that are critical for defense against pathogens (50).

Materials and Methods
Strains

Nematode strains, supplied by the Caenorhabditis Genet-
ics Center (CGC, Minneapolis), or derived in our laboratory
from CGC strains, were maintained at 20°C on 0.6% peptone
NGM-agar plates seeded with E. coli strain OP50, as described
earlier (2) Strains employed in these studies were Bristol-N2
(wild-type) and CF1038 bearing a daf-16(mu86) allele in which
most of the exons encoding DAF-16 are deleted.

Determination of lifespan

Nematodes, grown on NGM-agar plates containing 0.6%
peptone, were harvested, and eggs were isolated by alkaline
hypochlorite with 0.5 N NaOH, 1.05% hypochlorite; 5min at
20°C (2). The recovered eggs were rinsed in S Buffer and
placed on fresh agar plates seeded with E. coli strain OP50.
Survival cultures were established on 60-mm agar plates; just
after the L4 /adult molt, 50 adults were transferred to 60-mm
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dishes containing aspirin, salicylic acid, or ethanol (solvent
control, 5% [w/v] final concentration) at the indicated con-
centrations. Worms were maintained at 20+0.5°C and live
worms counted during daily transfer to fresh dishes; worms
not moving, either spontaneously or in response to touch,
were scored as dead. Worms were maintained until death.

Hydrogen peroxide stress response

Adult worms (N2 or daf-16) were synchronized by alkaline
hypochlorite lysis, and then the eggs were rinsed and trans-
ferred to fresh NGM-agar plates. On reaching the L4 stage,
worms were placed on fresh NGM-agar plates seeded with
E. coli strain OP50 and overlaid with 1 mM aspirin in ethanol,

FIG. 5. Protein aggregates
in C. elegans strain AM141.
Aggregates in worms ~4
days after the L4/adult molt
were reduced by life-long
exposure to 1 mM aspirin. (A)
Typical worms in each
group; (B) Data summarized
for >30 worms in each
group. *p<0.0001 vs. control.

Control

Aspirin

Salicylate Control Aspirin  Salicylate

or ethanol alone (control). After 48 h, they were transferred to
24-well plates (20-25 worms per well) containing S Medium
(S Buffer plus 0.5% cholesterol) and 5 mM hydrogen peroxide
(Sigma) at 20°C, as previously described (2, 3). Survival was
scored at 1-hour intervals, as above.

DCF assay for endogenous hydrogen peroxide

Endogenous ROS levels were indirectly quantified using
dichlorodihydrofluorescein diacetate, H,DCF-DA (Invitro-
gen), which is deacetylated and retained after uptake into
cells. In turn, H, DCF reacts with endogenous ROS to gener-
ate the fluorescent dye, dichlorofluorescein (DCF). Live C.
elegans nematodes were treated at day 4 post-hatch (1.5 days

w
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after the L4/adult molt) with 10 uM H,DCF-DA for 30 min.
Fluorescence intensity was imaged using an epifluorescence
microscope (Olympus BX151) with 488-nm incident light,
recording light emission at 520 +20 nm with a QICAM cam-
era. The intensity and duration of incident-light exposure was
kept constant, including the extent of prior light exposure
which might introduce photobleaching artefacts. Fluores-
cence intensity, recorded through a narrow-band-pass emis-
sion filter, was quantified from digital images using image]
software.

Fluorescence measurement of GFP-reporter strains

A confocal epifluorescence microscope (Olympus model
BX151) was used to image strains carrying Pgq.10::GFP or
Pgst4::GFP transgenes, with 390-nm excitation light, recording
green epifluorescence at 510 +20 nm. For each reporter strain,
the same image-capture settings were utilized for treated and
untreated control worms, using a QICAM. Autofluorescence
was measured for non-GFP (background-control) worms of
the same age, and subtracted from each image. Total GFP
fluorescence per worm was analyzed as above, using image]
software.

Locomotion, pharyngeal pumping, and protein
aggregate measurement

Locomotory movement, either spontaneous or in response
to touch, was measured for synchronized wild-type N2 cul-
tures as described previously (16, 19). To assess protein ag-
gregation, AM141 worms expressing a muscle-specific fusion
protein, polyglutamine (Q40)::YFP, were synchronized and
grown at 20°C as above. From the L4/adult interface onward,
treated worms were maintained in the presence of aspirin,
salicylate, or the ethanol solvent used to introduce those drugs
to plates. Epifluorescence images were captured as above.
Each worm was analyzed using image] software, and aggre-
gates were counted in at least 30 animals per group.

Statistical analysis

Survival and stress test experiments were repeated at least
three times. Median survival (either lifespan or survival of
peroxide stress) was calculated from the fitted Gompertz
function at 50% survival, using NCSS software (Number
Cruncher Statistical Systems, Kaysville, UT). Significance of
survival differences was determined by the Gehans-Wilcoxon
log-rank test, a nonparametric measure that assesses differ-
ences in entire survival curves. For comparisons of propor-
tions (e.g., for motility assays), the chi-squared test was
utilized. Other comparisons between groups involved Stu-
dent’s t test for larger samples (N >10), or the Behrens-Fisher
version of the f test appropriate to small samples in which
equality of variances could not be established. P values<0.05
are reported as nominally significant in two-group compari-
sons, but sufficient information is provided for stringent ad-
justments in threshold to be made for multiple endpoint
comparisons.
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